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Abstract— Development and orbital analysis of nonlinear model of geostationary communication satellite is presented. Satellite stability in 
orbit is the most challenging aspect of satellite technology. Satellites generally have the required instrumentation to provide intercontinental 
communication services. The orbital aspect of geostationary satellite is critical since it directly affects the link characteristics and has a 
significant impact on satellite network design. The fact that many subtle effects perturb earth satellite orbits, invalidating the simple orbits 
predicted by two-body gravity equations has necessitate the need to study the orbital aspect of satellite communication. This work 
describes a set of second-order differential equations which constitute the nonlinear model of the satellite. The model is confirmed to be 
sufficiently representative of the satellite since it provides the potential for very intensive verification and understanding of Kepler’s laws of 
planetary motion that are also applicable to the motion of satellites around earth. 
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1 INTRODUCTION 
AIRLY recently, communications satellites have become 
an attractive carriers of long distance communications. 
The satellite industry has grown until it handles most 

international telephone traffic, all international and almost 
all domestic long-distance television program distribution, 
and a rapidly growing proportion of new domestic voice 
and data channels [1], [2].  

Satellite communication is one of the most impressive 
spinoffs from the space programs and has made a major 
contribution to the pattern of international 
communications. A communication satellite is basically an 
electronic communication package placed in orbit whose 
prime objective is to initiate or assist communication 
transmission of information or message from one point to 
another through space [3]. 

It all began with an article by Arthur C. Clarke published 
in October 1945 issue of Wireless World, which 
theoretically proposed the feasibility of establishing a 
communication satellite in a geostationary orbit. In that 
article, he discussed how a geostationary orbit satellite 
would look static to an observer on Earth within the 
satellite’s coverage, thus providing an uninterrupted 
communication service across the globe. This marked the 
beginning of the satellite era [4]. 

Due to the nature of satellite links (long propagation 
delay, relative high bit error rate and limited bandwidth in 
comparison with terrestrial links, particularly optical links), 
some standard network protocols do not perform well and 
have to be adapted to support efficient connection over 
satellite. Satellite orbit directly affects the link 
characteristics [5] and has a significant impact in satellite 
network design [6]. 

A satellite in a circular orbit at such an altitude that 
corresponds to an orbital period of one day revolves 
around earth at the same speed as earth’s rotation. This 
altitude is 35,786.6 km, and the orbit is called a 
synchronous or geosynchronous orbit. If inclination of a 

geosynchronous orbit is zero (or near zero), the satellite 
remains fixed (or approximately fixed) over one point on 
the equator. Such an orbit is known as a geostationary orbit. 
An advantage of the geostationary orbit is that antennas on 
the ground, once aimed at the satellite, need not continue to 
rotate. Another advantage is that a satellite in this type of 
orbit continuously sees about one-third of earth. At an 
altitude of 35,786.6 km above the equator, the angular 
velocity of a satellite in this orbit matches the daily rotation 
of the earth’s surface, and this orbit has been widely used 
as a result [7]. It is well known that a system of three 
satellites in geostationary orbit each separated by 120 
degrees of longitude, as shown in Fig. 1, can receive and 
send radio signals over almost all the inhabited portions of 
the globe [8] 

Many subtle effects such as earth’s oblateness, solar and 
lunar effects, solar radiation pressure perturb earth satellite 
orbits, invalidating the simple orbits predicted by two-body 
gravity equations [9], [10]. Therefore, a study of nonlinear 
model of geostationary communication satellite will 
provide an insight to the orbital parameters which ensure 
stability under these subtle effects. 

                                                                                          

 
 

Fig. 1 A system of three geostationary communication satellites 
provides nearly worldwide coverage. 
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This paper is organized as follows. The introduction to 
this work is presented in section 1. Satellite model 
description is given in section 2. Section III is devoted to 
model analysis. Discussion is draw concerning the focus of 
the paper in section 4.  

2 GEOSTATIONARY SATELLITE MODEL 
From Newton’s law of universal gravitation, the 

gravitational force, F�⃗ on a satellite of mass m located at a 
vector distance r from the centre of the earth can be 
expressed as 
 

    F�⃗ = − GME mr�
r2             (1) 

 

 
 

Fig. 2 This rectangular coordinate system describes the earth and a 
geostationary satellite. The x, y, and z axes are fixed by earth’s 
equatorial plane and north-pole. The satellite is located with vector with 
respect to the centre of the earth. 

 
In (1), ME  is the mass of the earth, G is the gravitational 

constant r�, is a unit vector in r0, direction. For the same 
satellite, Newton’s second law of motion is can be written 
as 

 
                                            F�⃗ = m d2r

dt2 r�            (2) 
 
Equating (1) and (2), and let GME = μ.  GME   is called 

Kepler’s constant , we have 
 
                                         d

2r
dt2 r� + μr�

r2 = 0                          (3) 

 

 But 
    
                                                r� = r�⃗

r
            (4) 

                             
Therefore, (3) becomes 
 
                                         d

2r�⃗
dt2 + μr�⃗

r3 = 0            (5) 
 
 

Equation (5) can be solved by expressing it in a second 
rectangular coordinate system where the unit vectors are 
constant. A second rectangular coordinate system (xo , yo , 
zo) defined by orbital plane possible such that we can write 

 
                                  r⃗ = xo X� + yo Y�            (6) 
 
Substituting (6) in (5), we get 
 
              Xo� �d2xo

dt2 � + Yo��d2yo
dt2 � + μ�xo Xo�+yo Yo��

�xo
2 +yo

2�3 = 0           (7) 

 
The following transformations could be used to express 

(7) in polar coordinate and consequently lead to its 
simplification. 

 
                                 xo = ro cosβo          (8.1)  
 
                                  yo = ro sinβo          (8.2) 
 
                       X�o = r�o cos βo − β�o sin βo          (8.3)  
 
                       Y�o = β�o cosβo + r�o sin βo          (8.4) 
 
From (8.1) we can write 
 
       dxo

dt
= −ro sinβo

dβo
dt

+ cosβo
dro
dt

 
        
d2xo
dt2 =

−ro sinβo �
d2βo
dt2 � − ro cosβo �

dβo
dt
�

2
− 2 sin βo �

dβo
dt
� �dro

dt
� +

cosβo �
d2ro
dt2 �                                                                                (9) 

 
Also,         

dyo

dt
= ro cosβo

dβo

dt
+ sinβo

dro

dt
 

           
d2yo
dt2 = ro cosβo

d2βo
dt2 − ro sinβo �

dβo
dt
�

2
+ 2 cosβo �

dβo
dt
� �dro

dt
� +

sin βo �
d2ro
dt2 �                                                                              (10) 

 
Therefore, 
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Xo� �d2xo
dt2 � = �ro� cos βo − βo� sin βo� �−ro sinβo �

d2βo
dt2 � −

rocosβodβodt2−2sinβodβodtdrodt+cosβod2rodt2  
                                                                                    (11) 

                                                                                                                                                           

Yo��d2yo
dt2 � = �βo� cos βo + ro� sin βo� �ro cosβo

d2βo
dt2 −

rosinβodβodt2+2cosβodβodtdrodt+sinβod2rodt2  
                            (12) 

  
μ�xo X�o +yo Y�o �

�xo
2 +yo

2�3 =
μ�[ro cos βo ]�ro� cos βo−βo� sin βo �+[ro cos βo ]�βo� cos βo +ro� sin βo ��

�ro
2 (cos βo )2+ro

2 (sin βo )2�3 = μ
r2     

                                                                                             (13)                                                                                                                                            
                                                                                                                                             
Considering  ro�  and βo� components of (7) we can write 
 

                                d
2ro

dt2 − ro �
dβo
dt
�

2
= − μ

ro
2                         (14)  

                                                        
                          ro �

d2βo
dt2 � + 2 �dro

dt
� �dβo

dt
� = 0         (15) 

 
Equation (14) and (15) constitute a pair of second order 

differential equations which describe the motion of a 
satellite. One disadvantage of the geostationary orbit is that 
the gravity of the sun and moon disturb the orbit, causing 
the orbital inclination to increase. The satellite’s propulsion 
can counter this disturbance. Therefore, we have to factor 
the propulsion in both ro  and βo  directions in (14) and (15) 
respectively. Hence, we have 

 

                          d2ro
dt2 − ro �

dβo
dt
�

2
− fro

m
= − μ

ro
2          (16) 

 
                   ro �

d2βo
dt2 � + 2 �dro

dt
� �dβo

dt
� −

fβo
mro

= 0         (17) 

3     MODEL ANALYSIS AND DISCUSSION 
3.1 Orbit Description Analysis 

Since m, is large compared to fβo , (17) is approximately 
equals to (15). To obtain the equation (i.e orbital equation) 
which relates ro  to the angle of sweep βo , of the orbit plane, 
(16) has to be solved. Equation (15) is rearranged as follows

                         
                                   1

ro

d
dt
�ro

2 dβo
dt
� = 0                        (18) 

 
Equation (18) is only true if ro

2 dβo
dt

 is a constant, hence 
 
                            ro

2 dβo
dt

= a constant = g          (19) 
 
Where g is the magnitude of a vector called angular 

momentum. Squaring both sides of (19) and rearranging, it 
becomes  

 

                                     ro �
dβo
dt
�

2
= g2

ro
3            (20) 

 

Substituting for ro �
dβo
dt
�

2
 in (16) we have 

 
           d

2ro
dt2 − g2

ro
3 −

fro
m

= − μ
ro

2            (21) 
 
To obtain the angular (βo) rate of change of ro , we make 

use of function of a function theorem. Let  
 
       D = 1

ro
           (22) 

 
Therefore, 
 
                                   dro

dβo
= − 1

D2
dD

dβo
                        (23) 

 
But 
 
    dro

dt
= �dro

dβo
� �dβo

dt
� = �− 1

D2
dD

dβo
� � g

ro
2� = −g dD

βo
                (24) 

 
Therefore, 
 
                                d

2ro
dt2 = −g2D2 �d2D

dβo
2�          (25) 

 
Equation (21) becomes 
 
            −g2D2 �d2D

dβo
2� −

g2

ro
3 −

fro
m

= − μ
ro

2           (26) 
 
Since m is large compare to fro  (26) reduces to 
 
  −g2D2 �d2D

dβo
2� −

g2

ro
3 = − μ

ro
2  

 
       �d2D

dβo
2� − D = − μ

g2                                   (27) 
 
The solution of the second-order differential equation 

expressed in (27) is  
 
  D = μ

g2 + K cos(βo − θ) 
Consequently, 
 
                               ro = p

1+e cos (βo−θ)
          (28) 

 
Where g2K

μ
= e, the eccentricity of the orbit, p = g2

μ
, K and 

θ are constants to be determined based on certain boundary 
conditions. When θ = 0, i.e the orbital plane coincides with 
the equatorial plane,   

 
                               ro = p

1+e cos βo
           (29) 
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The linear model of a perturbed geostationary satellite 
has the potential for very intensive verification of satellite’s 
Keplerian law of motion. Equation (29) confirms that the 
orbit of a geostationary satellite lies in a plane and is an 
ellipse in which one focus is the earth. The motion of a 
geostationary satellite is illustrated in Fig. 3 [6]. 

 
                     

 
 

Fig. 3 Geostationary satellite orbit. 
 
In Fig. 3, the point A of closest approach to the earth is 

called the perigee and the farthest B is called the apogee. 
The centre of the earth coincides with one of the foci F. The 
label a is the semi-major axis and b is the semi-minor axis. 

Consider (19) i.e 
 
                                          ro

2 dβo
dt

= g          (30) 
 
                                 1

2
ro

2 dβo
dt

= 1
2

g = 1
2�pμ          (31) 

 
The right hand side of (31) equals the differential area of 

solid angle dβo . Therefore, (31) confirms that the orbit of the 
satellite sweeps out equal areas in equal time. This is a 
confirmation of Kepler’s second law of planetary motion. 
From Fig. 3, p is given as 
     
                                             p = a(1 − e2)          (32) 

 
The area of the ellipse is given as 

           
                                             Area = πab          (33) 

 
The orbital period T of the ellipse can be obtained by 

equating the right hand side of (3) and the swept out in one 
orbital revolution, i.e 

 
             πab = ∫ 1

2
T

0 �pμdt                        (34) 
 
                  T = 2πab

�pμ
           (35) 

           
                                                 p = b2

a
           (36) 

       

                                              T = 2π

μ
1
2

a
3
2          (37) 

                                                                                   
                                       T2 = 4π2

μ
a3          (38) 

 
Equation (38) expresses Kepler’s third law of planetary 

motion which states that the square of the period T of 
revolution of the smaller body about a large body is 
proportional to the third power of the semi major axis of 
the orbital ellipse. 

In conclusion, therefore, (29), (31) and (38) describe the 
satellite orbit. When the angle of inclination is zero and 
T = 24 hours, then a geostationary orbit which is a 
specialized geosynchronous orbit is obtained. 
 

3.2  Satellite Location Analysis 
Recall (21) and assume fro = 0 we have  
 
   d2ro

dt2 − g2

ro
3 = − μ

ro
2           (39) 

 
Substituting for g2 in (39), we have 
 
  d2ro

dt2 − pμ
ro

3 + μ
ro

2 = 0           (40) 
 
The integration with respect to time t of (40) gives 
 

                     1
2
�dro

dt
�

2
− a�1−e2�μ

2ro
2 − μ

ro
= ∫ 0dr = C         (41) 

 
Where, C is a constant of integration. Now we have to use 
the boundary conditions that at perigee, dro

dt
= 0 and r =

rmin = a(1 − e) to find the value of C. Therefore, we have C 
to be 
 
         C = a�1−e2�μ

2a2(1−e2)
− μ

a(1−e)
= − μ

2a
          (42) 

 

Therefore, from (41), �dro
dt
�

2
 becomes 

 

        �dro
dt
�

2
= −2 �a�1−e2�μ

2ro
2 − μ

ro
+ μ

2a
�          (43) 

 
From (6), the square of satellite velocity, γ as 
 

                                  γ2 = �dxo
dt
�

2
+ �dyo

dt
�

2
          (44) 

 
From (8.1) we can write 
 
                       dxo

dt
= −ro sin βo

dβo
dt

+ cos βo
dro
dt

         (45) 
                            

�dxo
dt
�

2
= ro

2 �dβo
dt
�

2
(sinβo )2 − 2ro �

dβo
dt
� �dro

dt
� sin βo cosβo +

�dro
dt
�

2
(cosβo )2                                                                      (46) 
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From (8.2) we can write 
 
                         dyo

dt
= ro cos βo

dβo
dt

+ sin βo
dro
dt

          (47) 
                              

�dyo
dt
�

2
= ro

2 �dβo
dt
�

2
(cosβo )2 + 2ro �

dβo
dt
� �dro

dt
� sin βo cosβo +

�dro
dt
�

2
(sinβo )2                                                                         (48) 

 
Therefore, (44) becomes 
 

                γ2 = �dxo
dt
�

2
+ �dyo

dt
�

2
= �dro

dt
�

2
+ ro

2 �dβo
dt
�

2
         (49) 

 
From (20), we can write 
 

             ro
2 �dβo

dt
�

2
= g2

ro
2 = pμ

ro
2 = aμ�1−e2�

ro
2          (50) 

 
Therefore, using (43) and (50), (49) becomes 
 

γ2 = −2 �
a(1 − e2)μ

2ro
2 −

μ
ro

+
μ

2a�
+

aμ(1 − e2)
ro

2 =
2μ
ro
−
μ
a

= �
μ
a�
�

2a
ro
− 1� 

                                                                                                   (51) 
 
Equation (49) can now be written as 
 

                 �μ
a
� �2a

ro
− 1� = �dro

dt
�

2
+ aμ�1−e2�

ro
2          (52) 

 

We can make �dro
dt
�

2
 the subject of the formula. Therefore, 

we get 
                                                                             

                            dro
dt

= �� μ
aro

2� (a2e2 − [a − r0]2)�
1
2         (53) 

 

  dt = ro �
a
μ
�

1
2 � dro

[(a2e2−[a−r0]2)]
1
2
�         (54) 

 
The average angular velocity υ of the satellite is 
 

                                           ν = 2π
T

= 1
a
�μ

a
�

1
2          (55) 

 
  νdt = �ro

a
� dro

[(a2e2−[a−r0]2)]
1
2
          (56) 

 
The satellite location in the orbital plane coordinate system 
is specified by (xo , yo). A vertical line through the satellite 
intersects a circumscribed circle at a point such that the 
eccentric anomaly E is the angle from xo  axis to the line 
joining that point to the centre of the circumscribed circle. 
The mathematical relationship between E and ro  is  
 

                                      ro = a(1 − e cos E)          (57) 
 
Also 
       
                                        a − ro = ae cos E          (58) 
 
                                         dro

dE
= ae sin E          (59) 

 
Replacing dro , (a − ro ), anddro  in (52), we get 
   
 νdt = �a(1−e cos E)

a
� ae sin EdE

�a2e2−a2e2(cos E)2 �
1
2
          (60) 

 
           νdt = �a(1−e cos E)

a
� ae sin EdE

ae sin E
= (1 − e cos E)         (61) 

 
The integration of both sides of (61) i.e 
 
           ∫ νdttp

t = ∫ (1 − e cos E)dEE
0           (62) 

 
Where tp  is the time when the satellite is crossing the xo  
axis. This also called the time of perigee. Therefore, (61) 
becomes 
 
                                      ν�t − tp� = E − e sin E         (63) 
      
                                           M = E − e sin E          (64) 
 
M is called the mean anomaly. Using (32) in (28) we get 
 
                                              ro = a�1−e2�

1+cos βo
          (65) 

 
From the above analysis it is clear that (ro ,βo ) and 
consequently (xo , yo ) can be calculated when e, a, and tb  are 
known. 

3.3     Energy Analysis 
The extraction algorithm process is the inverse of the 
embedding process. It is assumed that the watermark as 
well as the see value is available at the receiver end to the 
authorized users. 
Because of atmospheric drag a satellite is expected to satisfy 
the law of conservation of energy [11]. Equation (24) is 
expressed as    
 
                                   dro

dt
= g �− dD

βo
ro� + Dβo��          (66) 

 
From (66), the square of the magnitude Vof the velocity is 
given as 
 

                                   V2 = g2 ��dD
dt
�

2
+ D2�          (67) 
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Since the force between the earth and the satellite is 
attractive in nature,(1 = −ε), [12], we can rewrite (28) in 
terms of mechanical energy ε as 
 
                                    D = −ε+1+e cos (βo−θ)

p
         (68a) 

 

       dD
dβo

=
p d

dβo
[−ε+1+e cos (βo−θ)]−�−ε+1+e cos (βo−θ) d

dβo
(p)�

p2         (68b) 
 
                                    dD

dβo
= − e

p
sin(βo − θ)                        (69) 

 

Substituting for �dD
dt
�

2
and D2 in (67), we get 

 
                        ε2 − 2εe cos(βo − θ) + e2 = p2V2

g2          (70) 
Using  
 
             e cos(βo − θ) = Dp + ε  and p = g2

μ
, we get  

 
                  e2 = ε2 + g2

μ2 �2εμ 1
ro

+ V2�          (71) 
 
Since of μ, g, and e are constants, we can define another 
constant H such that 
 
             H = V2 + 2ε μ

ro
          (72) 

 
 The force expressed in (1) and the potential energy U, of 
geostationary satellite are related [13], as follows 
 
                                             F = −∇U          (73) 
 
Where, U = −mμ

ro
.  Also the kinetic energy of the satellite 

equals 1
2� mV2. Therefore, the mechanical (total) energy ε 

of the satellite is 
 
        ε = 1

2
m �V2 − 2μ

ro
�                        (74) 

 

           ε = 1
2

m ��V2 + 2ε μ
ro
� − 2μ

ro
(1 + ε)�         (75) 

 
Since 1 = −ε, (75) becomes 
 
                                 ε = 1

2
m �V2 + 2ε μ

ro
� = 1

2
mH                  (76) 

The fact that ε is constant confirms the law of conservation 
of mechanical energy of a satellite in geostationary orbit. 

4     CONCLUSION 
Development and orbital analysis of nonlinear model of 

perturbed geostationary communication satellite has been 
the focused of this paper. A satellite in geostationary orbit 
is expected to obey the Keplarian laws of satellite motion 
even when it is perturbed. Both eccentric and mean 

anomalies are required in the computation of satellite 
position in the xo- yo  plane. 

In the study of perturbed satellite motion, the mass of 
the satellite is relevant in certain specific instances, such as 
the study of air resistance in the upper atmosphere or 
radiation pressure and hence the conservation of 
mechanical energy.  

This work provides the understanding that the orbit of a 
geostationary satellite has to be defined and that satellite 
propulsion from within is required to keep it in orbit.  

Modeling of the dynamical nature of the satellite system 
(16) and (17) provide a basis for completely dependent 
optimal control input (fro , fβo ) and stability analysis. 
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